Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carcinogenesis ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466106

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental carcinogens accountable to developing skin cancers. Recently, we reported that exposure to benzo[a]pyrene (B[a]P), a common PAH, causes epigenetic and metabolic alterations in the initiation, promotion, and progression of nonmelanoma skin cancer (NMSC). As a follow-up investigation, this study examines how dietary triterpenoid ursolic acid regulates B[a]P-driven epigenetic and metabolic pathways in SKH-1 hairless mice. Our results show UA intercepts against B[a]P-induced tumorigenesis at different stages of NMSC. Epigenomic CpG methyl-seq data showed UA diminished B[a]P-mediated differentially methylated regions (DMRs) profiles. Transcriptomic RNA-seq revealed UA revoked B[a]P-induced differentially expressed genes (DEGs) of skin cancer-related genes, such as leucine rich repeat LGI family member 2 (Lgi2) and kallikrein-related peptidase 13 (Klk13), indicating UA plays a vital role in B[a]P-mediated gene regulation and its potential consequences in NMSC interception. Association analysis of DEGs and DMRs found that the mRNA expression of KLK13 gene was correlated with the promoter CpG methylation status in the early-stage comparison group, indicating UA could regulate the KLK13 by modulating its promoter methylation at an early stage of NMSC. The metabolomic study showed UA alters B[a]P-regulated cancer-associated metabolisms like thiamine metabolism, ascorbate and aldarate metabolism during the initiation phase; pyruvate, citrate, and thiamine metabolism during the promotion phase; and beta-alanine and pathothenate CoA biosynthesis during the late progression phase. Taken together, UA reverses B[a]P-driven epigenetic, transcriptomic, and metabolic reprogramming, potentially contributing to the overall cancer interception against B[a]P-mediated NMSC.

2.
Carcinogenesis ; 44(5): 436-449, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37100755

RESUMO

Non-melanoma skin cancer (NMSC) is the most common cancer in the world. Environmental exposure to carcinogens is one of the major causes of NMSC initiation and progression. In the current study, we utilized a two-stage skin carcinogenesis mouse model generated by sequential exposure to cancer-initiating agent benzo[a]pyrene (BaP) and promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA), to study epigenetic, transcriptomic and metabolic changes at different stages during the development of NMSC. BaP/TPA caused significant alterations in DNA methylation and gene expression profiles in skin carcinogenesis, as evidenced by DNA-seq and RNA-seq analysis. Correlation analysis between differentially expressed genes and differentially methylated regions found that the mRNA expression of oncogenes leucine rich repeat LGI family member 2 (Lgi2), kallikrein-related peptidase 13 (Klk13) and SRY-Box transcription factor (Sox5) are correlated with the promoter CpG methylation status, indicating BaP/TPA regulates these oncogenes through regulating their promoter methylation at different stages of NMSC. Pathway analysis identified that the modulation of macrophage-stimulating protein-recepteur d'origine nantais and high-mobility group box 1 signaling pathways, superpathway of melatonin degradation, melatonin degradation 1, sirtuin signaling and actin cytoskeleton signaling pathways are associated with the development of NMSC. The metabolomic study showed BaP/TPA regulated cancer-associated metabolisms like pyrimidine and amino acid metabolisms/metabolites and epigenetic-associated metabolites, such as S-adenosylmethionine, methionine and 5-methylcytosine, indicating a critical role in carcinogen-mediated metabolic reprogramming and its consequences on cancer development. Altogether, this study provides novel insights integrating methylomic, transcriptomic and metabolic-signaling pathways that could benefit future skin cancer treatment and interception studies.


Assuntos
Carcinógenos Ambientais , Melatonina , Neoplasias Cutâneas , Camundongos , Animais , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Carcinogênese/genética , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Acetato de Tetradecanoilforbol , Epigênese Genética
3.
Food Chem Toxicol ; 174: 113656, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36758788

RESUMO

Chronic cigarette smoke condensate (CSC) exposure is one of the preventable risk factors in the CS-induced lung cancer. However, understanding the mechanism of cellular transformation induced by CS in the lung remains limited. We investigated the effect of long term exposure of CSC in human normal lung epithelial Beas-2b cells, and chemopreventive mechanism of organosulphur garlic compounds, diallyl sulphide (DAS) and diallyl disulphide (DADS) using Next Generation Sequencing (NGS) transcriptomic analysis. CSC regulated 1077 genes and of these 36 genes are modulated by DAS while 101 genes by DADS. DAS modulated genes like IL1RL1 (interleukin-1 receptor like-1), HSPA-6 (heat shock protein family A, member 6) while DADS demonstrating ADTRP (Androgen-Dependent TFPI Regulating Protein), ANGPT4 (Angiopoietin 4), GFI1 (Growth Factor-Independent 1 Transcriptional Repressor), TBX2 (T-Box Transcription Factor 2), with some common genes like NEURL-1 (Neuralized E3-Ubiquitin Protein Ligase 1), suggesting differential effects between these two garlic compounds. They regulate genes by influencing pathways including HIF-1alpha, STAT-3 and matrix metalloproteases, contributing to the chemoprotective ability of organosulfur garlic compounds against CSC-induced cellular transformation. Taken together, we demonstrated CSC induced global gene expression changes pertaining to cellular transformation which potentially can be delayed with dietary chemopreventive phytochemicals like DS and DADS influencing alterations at the transcriptomic level.


Assuntos
Compostos Alílicos , Fumar Cigarros , Alho , Humanos , Compostos Alílicos/farmacologia , Células Epiteliais , Alho/química , Pulmão , Proteínas de Membrana/metabolismo , Nicotiana , Compostos de Enxofre/farmacologia , Transcriptoma
4.
AAPS J ; 24(6): 115, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324037

RESUMO

Overexposure to ultraviolet radiation and environmental carcinogens drive skin cancer development through redox imbalance and gene mutation. Antioxidants such as triterpenoids have exhibited anti-oxidative and anti-inflammatory potentials to alleviate skin carcinogenesis. This study investigated the methylome and transcriptome altered by tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) or TPA with 2-cyano 2,3-dioxoolean-1,9-dien-28-oic acid (CDDO). The results show that CDDO blocks TPA-induced transformation dose dependently. Several differential expressed genes (DEGs) involved in skin cell transformation, while counteracted by CDDO, were revealed by differential expression analysis including Lyl1, Lad1, and Dennd2d. In CpG methylomic profiles, the differentially methylated regions (DMRs) in the promoter region altered by TPA while showing the opposite methylation status in the CDDO treatment group were identified. The correlation between DNA methylation and RNA expression has been established and DMRs showing inverse correlation were further studied as potential therapeutic targets. From the CpG methylome and transcriptome results, CDDO significantly restored gene expression of NAD(P)H:quinone oxidoreductase 1 (Nqo1) inhibited by TPA by decreasing their promoter CpG methylation. Ingenuity Pathways Analysis (IPA) shows that CDDO neutralized the effect of TPA through modulating cell cycles, cell migration, and inflammatory and immune response regulatory pathways. Notably, Tumor Necrosis Factor Receptor 2 (TNFR2) signaling was significantly downregulated by CDDO potentially contributing to prevention of TPA-induced cell transformation. Overall, incorporating the transcriptome, CpG methylome, and signaling pathway network, we reveal potential therapeutic targets and pathways by which CDDO could reverse TPA-induced carcinogenesis. The results could be useful for future human study and targets development for skin cancer.


Assuntos
Neoplasias Cutâneas , Triterpenos , Humanos , Epigenoma , Acetato de Tetradecanoilforbol/toxicidade , Triterpenos/farmacologia , Transcriptoma , Raios Ultravioleta , Transformação Celular Neoplásica , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
5.
Chem Res Toxicol ; 35(7): 1220-1233, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35700067

RESUMO

Sulforaphane (SFN) is a potent anticancer agent which could protect the skin from ultraviolet (UV) radiation-induced insults. Currently, the metabolic rewiring and epigenetic reprograming induced by UVB and the role of SFN in UVB-mediated skin cell transformation remain largely unknown. Herein, we study the metabolome, epigenome, and transcriptome of human keratinocytes (HaCaT cells) exposed to UVB with or without SFN using liquid chromatography-mass spectroscopy, DNA methylation sequencing, and RNA sequencing. UVB increases intracellular reactive oxygen species (ROS) and SFN enhances ROS acutely in post-UVB-exposed HaCaT cells. UVB and SFN alter multiple metabolites and metabolism-related signaling pathways. Pathway analysis shows that UVB impacts numerous signaling pathways including STAT3, inhibition of matrix metalloproteases, and TGF-ß, among others. DNA/CpG methylation analysis shows that SFN could partially reverse some of the alterations of UVB-induced CpG methylome. Integrating RNA-seq and Methyl-seq data, starburst plots show the correlation of mRNA expression and CpG methylation status. The potential linkages between the metabolome, CpG methylome, and transcriptome suggest that metabolites produced during metabolism act as cofactors or substrates for catalytic epigenetic modification and transcriptional regulation. These results indicate that UVB drives metabolic rewiring, epigenetic reprograming, and phenotypic transcriptomic alterations and SFN would block or attenuate many of these aberrations, potentially contributing to the overall protective effect of SFN against UVB-induced skin damage.


Assuntos
Isotiocianatos , Queratinócitos , Apoptose , Epigênese Genética , Humanos , Isotiocianatos/metabolismo , Isotiocianatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sulfóxidos , Raios Ultravioleta
6.
Mol Nutr Food Res ; 66(12): e2200028, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35429118

RESUMO

SCOPE: Butyrate (B) is a short-chain fatty acid produced by dietary fiber, known to inhibit histone deacetylases (HDACs) and possess cancer-preventive/anticancer effects. However, the role of B in metabolic rewiring, epigenomic reprogramming, transcriptomic network, NRF2 signaling, and eliciting cancer-preventive effects in colorectal cancer (CRC) HCT116 cell remains unclear. METHODS AND RESULTS: Sodium butyrate (NaB) dose-dependently inhibits the growth of CRC HCT116 cells. NaB inhibits NRF2/NRF2-target genes and blocks NRF2-ARE signaling. NaB increases NRF2 negative regulator KEAP1 expression through inhibiting its promoter methylation. Associative analysis of DEGs (differentially expressed genes) from RNA-seq and DMRs (differentially methylated regions) from CpG methyl-seq identified the tumor suppressor gene ABCA1 and tumor promote gene EGR3 are correlated with their promoters' CpG methylation indicating NaB regulates cancer markers through modulating their promoter methylation. NaB activated the mitochondrial tricarboxylic acid (TCA) cycle while inhibited the methionine metabolism which are both tightly coupled to the epigenetic machinery. NaB regulates the epigenetic enzymes/genes including DNMT1, HAT1, KDM1A, KDM1B, and TET1. Altogether, B's regulation of metabolites coupled to the epigenetic enzymes illustrates the potential underlying biological connectivity between metabolomics and epigenomics. CONCLUSION: B regulates KEAP1/NRF2 signaling, drives metabolic rewiring, CpG methylomic, and transcriptomic reprogramming contributing to the overall cancer-prevention/anticancer effect in the CRC cell model.


Assuntos
Neoplasias do Colo , Epigenômica , Ácido Butírico/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Metilação de DNA , Epigênese Genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
7.
AAPS J ; 24(1): 30, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35043283

RESUMO

Fucoxanthin (FX) is a carotenoid with many pharmaceutical properties due to its antioxidant/anti-inflammatory and epigenetic effects. NFE2L2 is involved in the defense against oxidative stress/inflammation-mediated diseases, like anticancer effects elicited by phytochemicals including FX. However, the role of FX and NFE2L2 in metabolic rewiring, epigenomic reprogramming, and transcriptomic network in blocking pro-tumorigenic signaling and eliciting cancer-protective effects remains unknown. Herein, we utilized multi-omics approaches to evaluate the role of NFE2L2 and the impact of FX on tumor promoter TPA-induced skin cell transformation. FX blocked TPA-induced ROS and oxidized GSSG/reduced GSH in Nfe2l2wild-type(WT) but not Nfe2l2-knockdown (KD) cells. Both Nfe2l2 KD and TPA altered cellular metabolisms and metabolites which are tightly coupled to epigenetic machinery. The suppressive effects of FX on TPA-enhancedSAM/SAH was abrogated by Nfe2l2 KD indicating Nfe2l2 plays a critical role in FX-mediated metabolic rewiring and its potential consequences on epigenetic reprogramming. Epigenomic CpG methyl-seq revealed that FX attenuated TPA-induced differentially methylated regions (DMRs) of Uhrf1 and Dnmt1 genes. Transcriptomic RNA-seq showed that FX abrogated TPA-induced differentially expressed genes (DEGs) of Nfe2l2-related genes Nqo1, Ho1, and Keap1. Associative analysis of DEGs and DMRs identified that the mRNA expressions of Uhrf1 and Dnmt1 were correlated with the promoter CpG methylation status. Chromatin immunoprecipitation assay showed that FX restored Uhrf1 expression by regulating H3K27Me3 enrichment in the promoter region. In this context, FX/Nfe2l2's redox signaling drives metabolic rewiring causing epigenetic and transcriptomic reprogramming potentially contributing to the protection of TPA-induced JB6 cellular transformation skin cancer model. Graphical abstract.


Assuntos
Epigênese Genética , Fator 2 Relacionado a NF-E2/genética , Neoplasias Cutâneas/prevenção & controle , Xantofilas/farmacologia , Animais , Antioxidantes/farmacologia , Linhagem Celular , Transformação Celular Neoplásica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Camundongos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol
8.
Mol Carcinog ; 61(1): 111-121, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34727410

RESUMO

Ursolic acid (UA) is a triterpenoid phytochemical with a strong anticancer effect. The metabolic rewiring, epigenetic reprogramming, and chemopreventive effect of UA in prostate cancer (PCa) remain unknown. Herein, we investigated the efficacy of UA in PCa xenograft, and its biological effects on cellular metabolism, DNA methylation, and transcriptomic using multi-omics approaches. The metabolomics was quantified by liquid-chromatography-mass spectrometry (LC-MS) while epigenomic CpG methylation in parallel with transcriptomic gene expression was studied by next-generation sequencing technologies. UA administration attenuated the growth of transplanted human VCaP-Luc cells in immunodeficient mice. UA regulated several cellular metabolites and metabolism-related signaling pathways including S-adenosylmethionine (SAM), methionine, glucose 6-phosphate, CDP-choline, phosphatidylcholine biosynthesis, glycolysis, and nucleotide sugars metabolism. RNA-seq analyses revealed UA regulated several signaling pathways, including CXCR4 signaling, cancer metastasis signaling, and NRF2-mediated oxidative stress response. Epigenetic reprogramming study with DNA Methyl-seq uncovered a list of differentially methylated regions (DMRs) associated with UA treatment. Transcriptome-DNA methylome correlative analysis uncovered a list of genes, of which changes in gene expression correlated with the promoter CpG methylation status. Altogether, our results suggest that UA regulates metabolic rewiring of metabolism including SAM potentially driving epigenetic CpG methylation reprogramming, and transcriptomic signaling resulting in the overall anticancer chemopreventive effect.


Assuntos
Metilação de DNA/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Triterpenos/administração & dosagem , Animais , Linhagem Celular Tumoral , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Neoplasias da Próstata/genética , Análise de Sequência de RNA , Triterpenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido Ursólico
9.
Free Radic Biol Med ; 179: 328-336, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359432

RESUMO

Biological redox signaling plays an important role in many diseases. Redox signaling involves reductive and oxidative mechanisms. Oxidative stress occurs when reductive mechanism underwhelms oxidative challenges. Cellular oxidative stress occurs when reactive oxygen/nitrogen species (RO/NS) exceed the cellular reductive/antioxidant capacity. Endogenously produced RO/NS from mitochondrial metabolic citric-acid-cycle coupled with electron-transport-chain or exogenous stimuli trigger cellular signaling events leading to homeostatic response or pathological damage. Recent evidence suggests that RO/NS also modulate epigenetic machinery driving gene expression. RO/NS affect DNA methylation/demethylation, histone acetylation/deacetylation or histone methylation/demethylation. Many health beneficial phytochemicals possess redox capability that counteract RO/NS either by directly scavenging the radicals or via inductive mechanism of cellular defense antioxidant/reductive enzymes. Amazingly, these phytochemicals also possess epigenetic modifying ability. This review summarizes the latest advances on the interactions between redox signaling, mitochondrial metabolism, epigenetics and redox active phytochemicals and the future challenges of integrating these events in human health.


Assuntos
Epigênese Genética , Transdução de Sinais , Humanos , Oxirredução , Estresse Oxidativo , Compostos Fitoquímicos/farmacologia
10.
Carcinogenesis ; 43(2): 140-149, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34888630

RESUMO

Early detection of biomarkers in lung cancer is one of the best preventive strategies. Although many attempts have been made to understand the early events of lung carcinogenesis including cigarette smoking (CS) induced lung carcinogenesis, the integrative metabolomics and next-generation sequencing approaches are lacking. In this study, we treated the female A/J mice with CS carcinogen 4-[methyl(nitroso)amino]-1-(3-pyridinyl)-1-butanone (NNK) and naturally occurring organosulphur compound, diallyl sulphide (DAS) for 2 and 4 weeks after NNK injection and examined the metabolomic and DNA CpG methylomic and RNA transcriptomic profiles in the lung tissues. NNK drives metabolic changes including mitochondrial tricarboxylic acid (TCA) metabolites and pathways including Nicotine and its derivatives like nicotinamide and nicotinic acid. RNA-seq analysis and Reactome pathway analysis demonstrated metabolism pathways including Phase I and II drug metabolizing enzymes, mitochondrial oxidation and signaling kinase activation pathways modulated in a sequential manner. DNA CpG methyl-seq analyses showed differential global methylation patterns of lung tissues from week 2 versus week 4 in A/J mice including Adenylate Cyclase 6 (ADCY6), Ras-related C3 botulinum toxin substrate 3 (Rac3). Oral DAS treatment partially reversed some of the mitochondrial metabolic pathways, global methylation and transcriptomic changes during this early lung carcinogenesis stage. In summary, our result provides insights into CS carcinogen NNK's effects on driving alterations of metabolomics, epigenomics and transcriptomics and the chemopreventive effect of DAS in early stages of sequential lung carcinogenesis in A/J mouse model.


Assuntos
Neoplasias Pulmonares , Nitrosaminas , Animais , Feminino , Camundongos , Compostos Alílicos , Butanonas/metabolismo , Carcinogênese , Carcinógenos/metabolismo , Carcinógenos/toxicidade , DNA/metabolismo , Epigênese Genética , Epigenômica , Pulmão/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/prevenção & controle , Camundongos Endogâmicos , Nitrosaminas/metabolismo , Sulfetos , Nicotiana/efeitos adversos
11.
Mol Carcinog ; 60(6): 391-402, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33848375

RESUMO

Epigenetics/epigenomics has been shown to be involved in carcinogenesis. However, how the epigenome would be altered in the transgenic adenocarcinoma of the mouse prostate (TRAMP) cancer model and the effect of cancer chemopreventive phytochemical phenethyl isothiocyanate (PEITC) on the epigenome in TRAMP mice are not known. PEITC has been reported to reduce the risk of many cancers including prostate cancer (PCa). In this study, male TRAMP mice were fed a control diet or diet containing 0.05% PEITC from 8 weeks to 16 weeks. The tumor incidence was reduced in the PEITC diet (0/6) as compared with the control diet (6/7). RNA-sequencing (RNA-seq) analyses on nontumor and tumor prostatic tissues revealed several pathways like cell cycle/Cdc42 signaling, inflammation, and cancer-related signaling, were activated in prostate tissues of TRAMP mice but were reversed or attenuated in TRAMP mice fed with PEITC diet. DNA CpG methyl-seq analyses showed that global methylation patterns of prostate samples from TRAMP mice were hugely different from those of wild-type mice. Dietary PEITC partially reversed the global methylation changes during prostatic carcinogenesis. Integration of RNA-seq and DNA methyl-seq analyses identified a list of genes, including Adgrb1 and Ebf4, with an inverse regulatory relationship between their RNA expression and CpG methylation. In summary, our current study demonstrates that alteration of the global epigenome in TRAMP prostate tumor and PEITC administration suppresses PCa carcinogenesis, impacts global CpG epigenome and transcriptome, and attenuates carcinogenic pathways like cell cycle arrest and inflammation. These results may provide insights and epigenetic markers/targets for PCa prevention and treatment in human PCa patients.


Assuntos
Anticarcinógenos/farmacologia , Metilação de DNA/efeitos dos fármacos , Isotiocianatos/farmacologia , Neoplasias da Próstata/prevenção & controle , Animais , Epigenoma/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias da Próstata/genética
12.
Cancer Prev Res (Phila) ; 14(2): 151-164, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33055265

RESUMO

Cancer is a complex disease and cancer development takes 10-50 years involving epigenetics. Evidence suggests that approximately 80% of human cancers are linked to environmental factors impinging upon genetics/epigenetics. Because advanced metastasized cancers are resistant to radiotherapy/chemotherapeutic drugs, cancer prevention by relatively nontoxic chemopreventive "epigenetic modifiers" involving epigenetics/epigenomics is logical. Isothiocyanates are relatively nontoxic at low nutritional and even higher pharmacologic doses, with good oral bioavailability, potent antioxidative stress/antiinflammatory activities, possess epigenetic-modifying properties, great anticancer efficacy in many in vitro cell culture and in vivo animal models. This review summarizes the latest advances on the role of epigenetics/epigenomics by isothiocyanates in prevention of skin, colon, lung, breast, and prostate cancers. The exact molecular mechanism how isothiocyanates modify the epigenetic/epigenomic machinery is unclear. We postulate "redox" processes would play important roles. In addition, isothiocyanates sulforaphane and phenethyl isothiocyanate, possess multifaceted molecular mechanisms would be considered as "general" cancer preventive agents not unlike chemotherapeutic agents like platinum-based or taxane-based drugs. Analogous to chemotherapeutic agents, the isothiocyanates would need to be used in combination with other nontoxic chemopreventive phytochemicals or drugs such as NSAIDs, 5-α-reductase/aromatase inhibitors targeting different signaling pathways would be logical for the prevention of progression of tumors to late advanced metastatic states.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Isotiocianatos/uso terapêutico , Neoplasias/prevenção & controle , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Disponibilidade Biológica , Modelos Animais de Doenças , Humanos , Isotiocianatos/farmacologia , Neoplasias/genética , Oxirredução/efeitos dos fármacos
13.
Cancer Prev Res (Phila) ; 13(8): 673-686, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32467291

RESUMO

Ductal carcinoma in situ (DCIS), which accounts for one out of every five new breast cancer diagnoses, will progress to potentially lethal invasive ductal carcinoma (IDC) in about 50% of cases. Vitamin D compounds have been shown to inhibit progression to IDC in the MCF10DCIS model. This inhibition appears to involve a reduction in the cancer stem cell-like population in MCF10DCIS tumors. To identify genes that are involved in the vitamin D effects, a global transcriptomic analysis was undertaken of MCF10DCIS cells grown in mammosphere cultures, in which cancer stem-like cells grow preferentially and produce colonies by self-renewal and maturation, in the presence and absence of 1α25(OH)2D3 and a vitamin D analog, BXL0124. Using next-generation RNA-sequencing, we found that vitamin D compounds downregulated genes involved in maintenance of breast cancer stem-like cells (e.g., GDF15), epithelial-mesenchymal transition, invasion, and metastasis (e.g., LCN2 and S100A4), and chemoresistance (e.g., NGFR, PPP1R1B, and AGR2), while upregulating genes associated with a basal-like phenotype (e.g., KRT6A and KRT5) and negative regulators of breast tumorigenesis (e.g., EMP1). Gene methylation status was analyzed to determine whether the changes in expression induced by vitamin D compounds occurred via this mechanism. Ingenuity pathway analysis was performed to identify upstream regulators and downstream signaling pathway genes differentially regulated by vitamin D, including TP63 and vitamin D receptor -mediated canonical pathways in particular. This study provides a global profiling of changes in the gene signature of DCIS regulated by vitamin D compounds and possible targets for chemoprevention of DCIS progression to IDC in patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Carcinoma Ductal de Mama/prevenção & controle , Carcinoma Intraductal não Infiltrante/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Vitamina D/administração & dosagem , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Conjuntos de Dados como Assunto , Progressão da Doença , Regulação para Baixo/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Células-Tronco Neoplásicas/patologia , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Regulação para Cima/efeitos dos fármacos , Vitamina D/análogos & derivados
14.
Curr Pharmacol Rep ; 6(3): 56-70, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32395418

RESUMO

The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has presented unprecedented challenges to the healthcare systems in almost every country around the world. Currently, there are no proven effective vaccines or therapeutic agents against the virus. Current clinical management includes infection prevention and control measures and supportive care including supplemental oxygen and mechanical ventilatory support. Evolving research and clinical data regarding the virologic SARS-CoV-2 suggest a potential list of repurposed drugs with appropriate pharmacological effects and therapeutic efficacies in treating COVID-19 patients. In this review, we will update and summarize the most common and plausible drugs for the treatment of COVID-19 patients. These drugs and therapeutic agents include antiviral agents (remdesivir, hydroxychloroquine, chloroquine, lopinavir, umifenovir, favipiravir, and oseltamivir), and supporting agents (Ascorbic acid, Azithromycin, Corticosteroids, Nitric oxide, IL-6 antagonists), among others. We hope that this review will provide useful and most updated therapeutic drugs to prevent, control, and treat COVID-19 patients until the approval of vaccines and specific drugs targeting SARS-CoV-2.

15.
Biochem Pharmacol ; 175: 113890, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32119837

RESUMO

Triterpenoids are a powerful group of phytochemicals derived from plant foods and herbs. Many reports have shown that they possess chemopreventive and chemotherapeutic effects not only in cell lines and animal models but also in clinical trials. Because epigenetic changes could potentially occur in the early stages of carcinogenesis preceding genetic mutations, epigenetics are considered promising targets in early interventions against cancer using epigenetic bioactive substances. The biological properties of triterpenoids in cancer prevention and in health have multiple mechanisms, including antioxidant and anti-inflammatory activities, cell cycle regulation, as well as epigenetic/epigenomic regulation. In this review, we will discuss and summarize the latest advances in the study of the pharmacological effects of triterpenoids in cancer chemoprevention and in health, including the epigenetic machinery.


Assuntos
Anticarcinógenos/farmacologia , Epigênese Genética/efeitos dos fármacos , Neoplasias/genética , Neoplasias/prevenção & controle , Compostos Fitoquímicos/farmacologia , Triterpenos/farmacologia , Anticarcinógenos/química , Linhagem Celular Tumoral , Humanos , Compostos Fitoquímicos/química , Triterpenos/química
16.
Cancer Prev Res (Phila) ; 13(6): 551-562, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32161072

RESUMO

Sulforaphane (SFN), a potent antioxidant and antiinflammatory agent, has been shown to protect against cancers especially at early stages. However, how SFN affects UVB-mediated epigenome/DNA methylome and transcriptome changes in skin photodamage has not been fully assessed. Herein, we investigated the transcriptomic and DNA methylomic changes during tumor initiation, promotion, and progression and its impact and reversal by SFN using next-generation sequencing (NGS) technology. The results show that SFN reduced tumor incidence and tumor number. SFN's protective effects were more dramatic in the early stages than with later stages. Bioinformatic analysis of RNA sequencing (RNA-seq) data shows differential expressed genes and identifies the top canonical pathways related to SFN treatment of UVB-induced different stages of epidermal carcinogenesis. These pathways include p53 signaling, cell cycle: G2-M DNA damage checkpoint regulation, Th1, and Th2 activation pathway, and PTEN signaling pathways. The top upstream regulators related to UVB and SFN treatment as time progressed include dextran sulfate, TP53, NFE2L2 (Nrf2), IFNB1, and IL10RA. Bioinformatic analysis of Methyl-seq data shows several differential methylation regions induced by UVB were attenuated by SFN. These include Notch1, Smad6, Gnai3, and Apc2 Integrative analysis of RNA-seq and DNA-seq/CpG methylome yields a subgroup of genes associated with ultraviolet B (UVB) and SFN treatment. The changes in gene expression were inversely correlated with promoter CpG methylation status. These genes include Pik3cd, Matk, and Adm2 In conclusion, our study provides novel insights on the impact of SFN on the transcriptomic and DNA methylomic of UVB-induced different stages of skin cancer in mice.


Assuntos
Anticarcinógenos/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Epigenoma/efeitos dos fármacos , Isotiocianatos/uso terapêutico , Neoplasias Induzidas por Radiação/prevenção & controle , Neoplasias Cutâneas/prevenção & controle , Sulfóxidos/uso terapêutico , Transcriptoma/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Acetona/toxicidade , Animais , Ilhas de CpG/efeitos dos fármacos , DNA de Neoplasias/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Camundongos , Camundongos Pelados , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/genética , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , RNA-Seq , Radiossensibilizantes/toxicidade , Distribuição Aleatória , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/genética
17.
J Pharmacokinet Pharmacodyn ; 47(2): 131-144, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32020381

RESUMO

Curcumin (CUR) is a major component of turmeric Curcuma longa, which is often used in food or as a dietary supplement. The purpose of this preclinical study is to investigate the acute pharmacokinetic and pharmacodynamic (PK/PD) profiles of two commercially marketed CUR products (GNC and Vitamin Shoppe) and a CUR powder from Sigma in female rats. Plasma samples were collected at specific time points and analyzed for CUR and its metabolite curcumin-O-glucuronide. RNA was extracted from leukocytes and analyzed for the expression of Nrf2-mediated antioxidant genes Nrf2, Ho-1, and Nqo1 by qPCR as selected PD markers. CUR PK was characterized by a 2-compartment model (2CM) after intravenous (IV) or oral administrations. Compared to IV CUR, the absolute bioavailability (F) of CUR for GNC (GC) is 0.9%, Vitamin Shoppe (VC) is 0.6% and Sigma (SC) is 3.1%. Pharmacodynamically, all three formulations showed induction of antioxidant Nrf2, Ho-1 and Nqo1 gene expression in rat leucocytes. PK/PD modeling of CUR's effect on antioxidant gene expression was well captured by an indirect response model. Physiologically based PK modeling and simulation using GastroPlus described the observed PK data reasonably well. In summary, our current study shows that the absolute oral bioavailability of the parent CUR was very low for all three formulations. However, despite the low CUR plasma concentrations, all three oral CUR formulations displayed PD response in the induction of Nrf2-mediated antioxidant genes, suggesting the potential of oral CUR contributing to the overall health beneficial effects of oral CUR.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacocinética , Curcumina/administração & dosagem , Curcumina/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Antioxidantes/metabolismo , Curcuma , Curcumina/análogos & derivados , Composição de Medicamentos , Feminino , Glucuronídeos , Heme Oxigenase-1/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Extratos Vegetais , Pós , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Mol Carcinog ; 59(2): 227-236, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31820492

RESUMO

Colorectal cancer (CRC) is associated with significant morbidity and mortality in the US and worldwide. CRC is the second most common cancer-related death in both men and women globally. Chronic inflammation has been identified as one of the major risk factors of CRC. It may drive genetic and epigenetic/epigenomic alterations, such as DNA methylation, histone modification, and non-coding RNA regulation. Current prevention modalities for CRC are limited and some treatment regimens such as use the nonsteroidal anti-inflammatory drug aspirin may have severe side effects, namely gastrointestinal ulceration and bleeding. Therefore, there is an urgent need of developing alternative strategies. Recently, increasing evidence suggests that several dietary cancer chemopreventive phytochemicals possess anti-inflammation and antioxidative stress activities, and may prevent cancers including CRC. Curcumin (CUR) is the yellow pigment that is found in the rhizomes of turmeric (Curcuma longa). Many studies have demonstrated that CUR exhibit strong anticancer, antioxidative stress, and anti-inflammatory activities by regulating signaling pathways, such as nuclear factor erythroid-2-related factor 2, nuclear factor-κB, and epigenetics/epigenomics pathways of histones modifications, and DNA methylation. In this review, we will discuss the latest evidence in epigenetics/epigenomics alterations by CUR in CRC and their potential contribution in the prevention of CRC.


Assuntos
Neoplasias do Colo/prevenção & controle , Curcumina/farmacologia , Epigênese Genética/efeitos dos fármacos , Epigenômica , Inflamação/prevenção & controle , Antineoplásicos/farmacologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Curcuma/química , Humanos , Inflamação/genética , Inflamação/patologia , Estadiamento de Neoplasias , Fitoterapia/métodos
19.
Mol Carcinog ; 58(10): 1738-1753, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31237383

RESUMO

Nonmelanoma skin cancers (NMSCs) are the most common type of skin cancers. Major risk factors for NMSCs include exposure to ultraviolet (UV) irradiation. Ursolic acid (UA) is a natural triterpenoid enriched in blueberries and herbal medicinal products, and possess anticancer activities. This study focuses on the impact of UA on epigenomic, genomic mechanisms and prevention of UVB-mediated NMSC. CpG methylome and RNA transcriptome alterations of early, promotion and late stages of UA treated on UVB-induced NMSC in SKH-1 hairless mice were conducted using CpG methyl-seq and RNA-seq. Samples were collected at weeks 2, 15, and 25, and integrated bioinformatic analyses were performed to identify key pathways and genes modified by UA against UVB-induced NMSC. Morphologically, UA significantly reduced NMSC tumor volume and tumor number. DNA methylome showed inflammatory pathways IL-8, NF-κB, and Nrf2 pathways were highly involved. Antioxidative stress master regulator Nrf2, cyclin D1, DNA damage, and anti-inflammatory pathways were induced by UA. Nrf2, cyclin D1, TNFrsf1b, and Mybl1 at early (2 weeks) and late (25 weeks) stages were identified and validated by quantitative polymerase chain reaction. In summary, integration of CpG methylome and RNA transcriptome studies show UA alters antioxidative, anti-inflammatory, and anticancer pathways in UVB-induced NMSC carcinogenesis. Particularly, UA appears to drive Nrf2 and its upstream/downstream genes, anti-inflammatory (at early stages) and cell cycle regulatory (both early and late stages) genes, of which might contribute to the overall chemopreventive effects of UVB-induced MNSC. This study may provide potential biomarkers/targets for chemoprevention of early stage of UVB-induced NMSC in human.


Assuntos
Metilação de DNA/genética , Neoplasias Induzidas por Radiação/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Transcriptoma/genética , Animais , Anticarcinógenos/farmacologia , Antioxidantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Epigenoma/efeitos dos fármacos , Humanos , Camundongos , Proteínas de Neoplasias , Neoplasias Induzidas por Radiação/genética , Neoplasias Induzidas por Radiação/patologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Pele/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transcriptoma/efeitos da radiação , Triterpenos/farmacologia , Raios Ultravioleta/efeitos adversos , Ácido Ursólico
20.
Chem Biol Interact ; 309: 108701, 2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31181187

RESUMO

Pelargonidin, a well-known natural anthocyanidin found in berries strawberries, blueberries, red radishes and other natural foods, has been found to possess health beneficial effects including anti-cancer effect. Herein, we investigated the effect of pelargonidin on cellular transformation in mouse skin epidermal JB6 (JB6 P+) cells induced by tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Pelargonidin treatment significantly decreased colony formation and suppressed cell viability of JB6 P+ cells. Pelargonidin also induced the anti-oxidant response element (ARE)-luciferase activation in HepG2-C8 cells overexpressing the ARE-luciferase reporter. Knockdown of nuclear factor E2-related factor 2 (Nrf2) in shNrf2 JB6 P+ cells enhanced TPA-induced colony formation and attenuated pelargonidin's blocking effect. Pelargonidin reduced the protein levels of genes encoding methyltransferases (DNMTs) and histone deacetylases (HDACs). Importantly, pelargonidin decreased the DNA methylation in the Nrf2 promoter region of JB6 P+ cells and increased Nrf2 downstream target genes expression, such as NAD(P)H/quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), involved in cellular protection. In summary, our results showed that pelargonidin blocks TPA-induced cell transformation. The possible molecular mechanisms of its potential anti-cancer effects against neoplastic transformation may be attributed to its activation of Nrf2-ARE signaling pathway and its cytoprotective effect.


Assuntos
Antocianinas/farmacologia , Desmetilação do DNA/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Antocianinas/química , Elementos de Resposta Antioxidante/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA-Citosina Metilases/metabolismo , Células Epidérmicas/citologia , Células Epidérmicas/efeitos dos fármacos , Células Epidérmicas/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Histona Desacetilases/metabolismo , Humanos , Camundongos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...